Use of multiple wearable inertial sensors in upper limb motion tracking.

نویسندگان

  • Huiyu Zhou
  • Thomas Stone
  • Huosheng Hu
  • Nigel Harris
چکیده

This paper presents a new human motion tracking system using two wearable inertial sensors that are placed near the wrist and elbow joints of the upper limb. Each inertial sensor consists of a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. The turning rates of the gyroscope were utilised for localising the wrist and elbow joints on the assumption that the two upper limb segment lengths are known a priori. To determine the translation and rotation of the shoulder joint, an equality-constrained optimisation technique is adopted to find an optimal solution, incorporating measurements from the tri-axial accelerometer and gyroscope. Experimental results demonstrate that this new system, compared to an optical motion tracker, has RMS position errors that are normally less than 0.01 m, and RMS angle errors that are 2.5-4.8 degrees .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed s...

متن کامل

Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors

Quantitative evaluation of motor function is of great demand for monitoring clinical outcome of applied interventions and further guiding the establishment of therapeutic protocol. This study proposes a novel framework for evaluating upper limb motor function based on data fusion from inertial measurement units (IMUs) and surface electromyography (EMG) sensors. With wearable sensors worn on the...

متن کامل

Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control

In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb sy...

متن کامل

Multiple-Activity Human Body Tracking in Unconstrained Environments

We propose a method for human full-body pose tracking from measurements of wearable inertial sensors. Since the data provided by such sensors is sparse, noisy and often ambiguous, we use a compound prior model of feasible human poses to constrain the tracking problem. Our model consists of several low-dimensional, activity-specific motion models and an efficient, sampling-based activity switchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical engineering & physics

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2008